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Summary

Artificial intelligence is a field of science and engineering 
that focuses on the computational understanding of inte-
lligent behaviors and the creation of artifacts that exhibit 
such behaviors, enabling computers to function and think 
like humans. This technology assists in overcoming the 
multiple challenges faced by healthcare professionals and 
contributes to the diagnosis, management, and prognosis 
of patients. Currently, several artificial intelligence models 
have been developed for digestive endoscopy, including mo-
dels that allow the detection of anatomical structures that 
can assist in the training of physicians, serve as a guide 
during endoscopic procedures, or assist in stratifying pre-

malignant and malignant lesions. This would reduce false 
negatives and provide more timely treatments. Compute-
rized systems for lesion detection and diagnosis exist for 
different segments of the digestive tract, each with specific 
functions that provide assistance during procedures. All of 
this has been aimed at reducing risks stemming from hu-
man and environmental factors, among others, which can 
affect the diagnosis and management of diseases. Artificial 
intelligence models for digestive endoscopy can not only 
enhance the visual impression of endoscopists but also re-
duce the learning curve through the application of precise 
technologies. In this way, the gap between experienced and 
less experienced endoscopists is reduced. In this article, the 
technological advancements of artificial intelligence in di-
gestive endoscopy and related future aspects are discussed.

Keywords. Artificial intelligence, computer-assisted detec-
tion, computer-assisted diagnosis, deep learning, endoscopy.

La era de la endoscopia inteligente: 
cómo la inteligencia artificial poten-
cia la endoscopia digestivas

Resumen

La inteligencia artificial es un campo de la ciencia e inge-
niería que se ocupa de la comprensión computacional de 
comportamientos inteligentes y la creación de artefactos que 
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exhiben tales comportamientos, lo que permite a las com-
putadoras funcionar y pensar de manera similar a la de los 
seres humanos. Esta tecnología ayuda a superar los múltiples 
retos que enfrentan los profesionales de la salud aportando 
favorablemente en el diagnóstico, manejo y pronóstico de los 
pacientes. Actualmente se han desarrollado varios modelos a 
nivel de endoscopia digestiva, incluyendo algunos que per-
miten la detección de estructuras anatómicas que pueden 
ayudar en el entrenamiento de médicos, como guía durante 
procedimientos endoscópicos o para la estratificación de le-
siones pre-malignas y malignas, disminuyendo falsos negati-
vos y proporcionar tratamientos oportunos. En la actualidad 
existen sistemas computarizados de detección de lesiones y 
de diagnóstico en los distintos segmentos de la vía digestiva, 
cada uno con funciones particulares que proporcionan asis-
tencia durante los procedimientos. Todo esto se ha llevado 
a cabo con el fin de reducir riesgos derivados por factores 
humanos, ambientales, entre otros, los cuales pueden afec-
tar el diagnóstico y manejo de enfermedades. Los modelos 
de inteligencia artificial para endoscopía digestiva pueden, 
además de mejorar la impresión visual de los endoscopistas, 
disminuir la curva de aprendizaje a través de la aplicación 
de tecnologías precisas, y de esta manera reducir la diferencia 
entre endoscopistas expertos y menos expertos. En este artículo 
se discuten los avances tecnológicos de la inteligencia artificial 
en endoscopia digestiva y los aspectos futuros relacionados.

Palabras claves. Inteligencia artificial, detección asistida 
por computadora, diagnóstico asistido por computadora, 
aprendizaje profundo, endoscopia.

Abbreviations

AI: Artificial Intelligence.

ML: Machine learning.

DL: Deep learning.

CADe: Computer-assisted detection device.

CADx: Computer-assisted diagnostic device.

EUS: Endoscopic ultrasound.

EGD: Esophagogastroduodenoscopy.

AUC: Area under the curve.

BE: Barrett’s Esophagus.

SCEC: Squamous cell esophageal carcinoma.

NBI: Narrow Band Imaging.

GERD: Gastroesophageal reflux disease.

SVM: Support Vector Machine.

CNN: Convolutional Neural Network.

CRC: Colorectal cancer.

ADR: Adenoma Detection Rate.

RR: Relative risk.

APC: Adenoma per Colonoscopy.

PDR: Polyp Detection Rate.

ERCP: Endoscopic retrograde cholangiopancreatography.

PPV: Positive Predictive Value.

NPV: Negative Predictive Value.

mAP: Mean Average Precision.

FPS: Frames per Second.

IoU: Intersection over the union.

CT: Computerized tomography.

MRI: Magnetic resonance imaging.

IPMN: Intraductal papillary mucinous neoplasm.

SEL: Subepithelial Lesion.

GIST: Gastrointestinal Stromal Tumor.

NET: Neuroendocrine Tumor.

Introduction

Artificial Intelligence: Basic Concepts

Artificial intelligence (AI) is a branch of computer 
science whose purpose is the understanding and execution 
of intelligent insights from a set of computational models.1 
Using a set of algorithms, AI is capable of functioning and 
reasoning like a human being through a learning process 
based on training and has the advantage of being able to 
complete it in less time than a human being.1 Additionally, 
this technology can incorporate machine learning (ML) 
and its subset, deep learning (DL).2

ML is a subgroup of AI characterized by the use of 
mathematical models for learning from data, which later 
enables pattern recognition.3 Predictive models are crea-
ted from algorithms, allowing for data analysis and the 
resolution of complex problems. Additionally, ML can 
be categorized into three types: supervised, unsupervised, 
and reinforcement2,4,5:

a) Supervised learning: this type of learning is based 
on training using well-categorized or labeled data (exter-
nal supervision). Labeled data is divided for both training 
and internal validation. Supervised learning is based on 
regression, classification, and characterization.2,3

b) Unsupervised learning: this model learns from unca-
tegorized data, enabling the algorithm to operate without 
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any guidance, relying on the understanding of patterns 
and thus requiring a greater amount of information.2,3

c) Reinforcement learning: it does not require data or 
supervision to learn; instead, it is based on learning from 
the environment through rewards.2,3

DL is a specialized category of ML that is based on the 
architecture of neural networks resembling those in the 
human brain.3 It consists of an initial layer that receives 
input; this layer if followed by a set of hidden middle la-
yers, and then the final output layer (Figure 1). Each layer 
in this network comprises a group of neurons or nodes 
that transform (activate) an input into an output through 
mathematical functions.2 The output of a previous layer 

serves as the input for the next layer, and so on, until 
reaching the output layer to obtain a final outcome or 
detection.2,3

The development of a detection model based on DL 
involves three main phases. In the first phase, data (ima-
ges or videos) is collected, and the structures to be used 
in training the model are properly labeled. Next, in the 
second phase, the model’s architecture is established, and 
neural networks are created (input layer, middle layer, 
and output layer). Finally, in the third phase, the sam-
ples obtained in the previous phases are used to train the 
model and subsequently validate it internally (Figure 2).1 
The metrics for evaluating the model’s performance are 
obtained from this final phase (Table 1).

Input layer Middle (Hidden) layer Output layer

Figure 1. Schematic representation of the architecture of convolutional neural network models
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Figure 2. Phases of deep learning model development

Fase II: Selección de la arquitectura del modelo

A) Data collection and labeling phase. B) Model architecture establishment. C) Model training phase using samples obtained in the first phase.

A

B

C



230 Acta Gastroenterol Latinoam 2023;53(3):226-240

The Era of Intelligent Endoscopy: How Artificial Intelligence Empowers Digestive Endoscopy Jorge Baquerizo-Burgos et al.

Upper Digestive Endoscopy

Also known as esophagogastroduodenoscopy (EGD), 
this procedure is of great importance in the diagnosis 
of upper gastrointestinal tract lesions.7,8 However, the 
diagnostic rate varies according to the performance of 
the endoscopist.9 Errors during EGD are one of the lea-
ding causes of incorrect diagnosis of premalignant le-
sions and severe esophagogastricduodenal diseases. AI 
systems have been developed to overcome the technical 
challenges described above. Their use in the upper di-
gestive tract ranges from anatomical localization to the 
detection and evaluation of malignant and premalig-
nant lesions.7-10

Takiyama et al. developed an AI model capable of 
classifying anatomical structures in the upper digestive 

endoscopic procedures, reducing the number of false 
negatives through characterization and stratification of 
premalignant and malignant lesions, among others.4

In the following sections, we will review updated in-
formation on the uses of AI and its impact according to 
the type of endoscopic assessment.

Clinical Applications of Artificial Intelligence

Clinical applications of AI have progressively increa-
sed in the field of healthcare, including gastroenterolo-
gy. AI helps overcome the numerous challenges faced 
by healthcare professionals during data acquisition, 
analysis, and knowledge application that contributes to 
patient diagnosis, management, and prognosis.1 Addi-
tionally, automation in image identification and recog-
nition assists in reducing errors stemming from human 
factors (fatigue and workload, among others).

Technological advancements have led to the deve-
lopment of intelligent systems that facilitate the de-
tection or the stratification of lesions observed during 
endoscopic or imaging procedures. These are referred 
to as computer-assisted detection device (CADe) or 
computer-assisted diagnostic device (CADx).6 Thus, 
the application of these devices in digestive endoscopy 
can facilitate and increase lesion detection during pro-
cedures and categorize lesions as benign or malignant 
in real-time.

Artificial intelligence in Digestive Endoscopy

Currently, several models have been developed for 
upper and lower gastrointestinal endoscopy, as well as 
for advanced endoscopic procedures such as cholan-
gioscopy and endoscopic ultrasound (EUS) (Table 2). 
These models encompass both CADe and CADx sys-
tems, each employing distinct algorithms that enable 
different functionalities. These functionalities include 
identifying anatomical structures and specific lesions, 
assisting in physician training or serving a guide during 

Metrics		  Definition

Sensitivity:	 The fraction of positive samples classified as positive by 	
	 the model.

Specificity:	 The fraction of negative samples classified as negative 	
	 by the model.

Precision:	 The fraction of positively classified samples which are 	
	 truly positive.

F1-Score:	 The harmonic means of precision and sensitivity.

IoU:	 The performance of object detection by comparing the 	
	 “ground truth” bounding box to the predicted bounding box.

Table 1. Metrics obtained for the performance evaluation 
of deep learning models

IoU: Intersection over the union.

Segment		  AI Applications

Esophagus	 • BE early detection and diagnosis
	 • Lesion classification (benign or malignant)
	 • Esophageal carcinoma detection
	 • Tumoral lesions invasion

Stomach	 • Blindspot surveillance
	 • Detection of lesions suggestive of neoplasia 
	 • Tumoral lesions invasion
	 • Differentiation between normal and pathological tissues
	 • GERD detection
	 • H. pylori-associated gastritis detection

Small	 • Lesion detection and classification (polyps, bleeding,	
Intestine	    ulcers, among others)
	 • Evaluation of celiac and Crohn’s disease

Colon	 • Polyp detection and characterization
	 • Assistance during screening colonoscopy

Biliary tract	 • Detection of areas suggestive of neoplasia
	 • Identification of normal structures
	 • Guidance during biopsy sampling

Table 2. Applications of artificial intelligence in different 
segments of the digestive system

AI: Artificial intelligence; BE: Barrett’s esophagus; GERD: Gastroesophageal reflux 
disease.
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tract, which has shown excellent performance in iden-
tifying the larynx (AUC 1.00), the esophagus (AUC 
1.00), the stomach (upper, middle, and lower portions), 
and the duodenum (AUC 0.99).7

On the other hand, in the multicenter study con-
ducted by Luo et al., the diagnostic accuracy of the 
GRADIS model for detecting upper digestive tract neo-
plasms (esophagus and stomach) was evaluated. This 
model achieved a diagnostic accuracy of 95.5% (95% 
CI: 95.2 - 95.7) during internal validation. When com-
paring its performance with endoscopists of different 
expertise levels, it showed similar sensitivity to experts 
(94.2% vs. 94.5%), and higher sensitivity compared to 
competent endoscopists (94.2% vs. 85.8%) and trainees 
(94.2% vs. 72.2%).11 Additionally, the diagnostic accu-
racy of experts (92.8%) when using the AI model was 
similar to that of the group of competent endoscopists 
(93.4%) and trainees (90.4%).11 This demonstrates that 
the application of AI can narrow the gap between ex-
perts and non-experts.11

Esophagus

Accuracy in the early diagnosis of Barrett’s esopha-
gus (BE) and esophageal neoplasia remains a challenge, 
even for many experienced endoscopists. Once BE is 
identified, the identification of regions with dysplasia 
or early adenocarcinoma becomes necessary.

AI models have been designed to assist endoscopists 
in improving the accuracy of diagnosing these lesions,12 
including systems for neoplasia classification using real-
time magnification with high precision (89.9%), which 
have enabled early diagnosis and differentiation of neo-
plasia in BE.13,14 

The CADx system developed and validated by de 
Groof et al. allowed for the classification of neoplas-
tic and non-neoplastic images in BE compared to the 
performance of 53 endoscopists. The model outperfor-
med the endoscopists’ performance and achieved hig-
her accuracy (88.0% vs. 73.0%), sensitivity (93.0% vs. 
72.0%), and specificity (83.0% vs. 74.0%).15 

On the other hand, due to the significant impor-
tance of recognizing and treating esophageal carcino-
ma promptly, researchers have developed systems that 
enable lesion detection as well as the assessment of di-
sease invasion.12,16,17 Esophageal carcinoma is often de-
tected at advanced stages, and small lesions are usually 
detected by highly experienced endoscopists.12 AI allows 
for the detection of lesions smaller than 10 mm with 
high accuracy (91.4%), even surpassing that of many 
so-called expert endoscopists (> 15 years of experience, 

88.8%), those with moderate experience (5 - 15 years, 
81.6%), and those with limited experience (< 5 years, 
77.2%).16

Determining the depth of the lesion enables the se-
lection of the appropriate treatment (surgical, endosco-
pic, pharmacological), and prognosis assessment.17 One 
of the models with high diagnostic accuracy in predic-
ting the depth of invasion of squamous cell esophageal 
carcinoma (SCEC) is proposed by Tokai et al. Resear-
chers used 1751 images for training and 291 images 
for validation, achieving a sensitivity of 84.1% and a 
diagnostic accuracy of 80.9% in estimating the depth of 
SCEC invasion. When compared to thirteen endosco-
pists, this model showed higher diagnostic accuracy and 
a greater AUC.17

Stomach

Stomach cancer usually shows nonspecific symp-
toms during its early stages, and that´s why patients are 
often diagnosed at advanced stages. The prognosis of 
stomach cancer depends on the assessment of the depth 
of the lesion and its early detection. It has been reported 
that the early detection of stomach cancer can increase 
5-year survival rates to 90.0%.18

According to Menon et al., the rate of false negati-
ves in the diagnosis of early stomach cancer can reach 
up to 25.0%.18 Automation systems aim to reduce this 
percentage with models that classify stomach images in 
EGD to monitor blind spots with high precision,19 mo-
dels that detect lesions suggestive of stomach cancer11 
and precancerous lesions,20 and that further assess the 
depth of invasion.21

Chromoendoscopy is one of the diagnostic methods 
used for the early detection of gastric neoplasm. Howe-
ver, during an endoscopic session, multiple video frames 
can be generated, making the review process an exhaus-
tive task for endoscopists.

To prevent losses during evaluation, Ali et al. deve-
loped a CADx trained to classify frames as normal or 
pathological based on local and global texture. This mo-
del showed a sensitivity, specificity, precision, and AUC 
of 91.0%, 82.0%, 87.0%, and 0.91, respectively.22 The 
model proved to be a diagnostic aid in the early detec-
tion of gastric cancer since it reduces the time used for 
the evaluation of endoscopic sequence.

The model studied by Wu et al. 19 showed high accu-
racy, specificity, and sensitivity (92.5%, 94.0%, 91.0%, 
respectively) in assessing non-malignancy, and surpassing 
expert endoscopists in this task.19 Additionally, during 
real-time procedures, it showed excellent performance in 
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early gastric adenocarcinoma detection with blind-spot 
monitoring. Additionally, other AI models have shown 
high accuracy in diagnosing gastrointestinal neoplasia 
comparable to that of expert endoscopists.11,17

Furthermore, models have been developed that not 
only identify neoplastic lesions but also predict their 
depth. Nagao et al. trained a model to predict the depth 
of invasion of gastric cancer using conventional white-
light images, narrow band imaging (NBI) images, and 
images with indigo carmine contrast.21 The model 
showed high accuracy across all three systems (white-
light images 94.5%, NBI 94.3%, and indigo carmine 
95.5%).21

Zhu et al. (total accuracy 89.2%) and Yoon et al. 
(sensitivity 81.7%. specificity 75.4%) have reported 
diagnostic accuracy of their models for assessing inva-
sion depth, which is comparable to that of other con-
ventional methods. The advantages of using these mo-
dels lie in the more objective assessment of macroscopic 
lesion characteristics, reducing the need for other inva-
sive techniques like EUS.21,23,24

In addition to neoplasia identification, other appli-
cations include the detection of gastroesophageal reflux 
disease (GERD)25 and H. pylori-associated gastritis.26 
Models developed to assist in classifying GERD with 
NBI have achieved a total diagnostic accuracy of 99.2% 
for grade A-B lesions, 100% for grade C-D lesions, and 
100% in the control group. Therefore, these models are 
considered highly useful for assisting in the automatic 
detection of lesions consistent with GERD, and increa-
se diagnostic accuracy for trainees.25

On the other hand, the neural network designed 
for predicting H. pylori in endoscopic images correctly 
diagnosed 80% of negative cases, 84% of eradicated ca-
ses, and 48% of positive cases. The authors of this study 
emphasize the utility of this model in identifying pa-
tients who may require additional confirmation testing 
for H. pylori based on endoscopic results, and recom-
mend its use as a diagnostic aid.26

Small Intestine
Capsule endoscopy, as a non-invasive procedure 

allows for the detection and classification of lesions 
(bleeding, ulcers, and polyps), assessment of intestinal 
motility, and evaluation of conditions like celiac disease 
and other pathologies that primarily affect the small in-
testine. However, the evaluation of the large number of 
obtained images (> 60 000) and the difficulty in direc-
ting the capsule (completely dependent on gastrointes-
tinal peristalsis) make the procedure slow (from 45 mi-
nutes to 8 hours) and tedious. To address the technical 
difficulties associated with this procedure, automation 
using AI has been explored.28

AI models for capsule endoscopy have been develo-
ped based on DL. Image classification and categorization 
are performed using support vector machines (SVMs). 
These models separate data using hyperplanes in two or 
more dimensions. After employing Kernel parameters, 
an “optimal” hyperplane is determined, which creates 
“boundaries” for data categorization (Figure 3).27,28 Fo-
llowing categorization, DL algorithms are used to create 
artificial neural networks.27,29

H1
H1

H2
H3

A B

KERNEL

Figure 3. Support vector machines (SVM) for data classification

A) Linear classification with hyperplanes (H1, H2, H3) by SVM. B) Data classified with an optimal hyperplane (H1) after Kernel parameters.
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Currently, AI models for capsule endoscopy include 
capsule tracking, detection of polyps, bleeding, ulcers, 
and the study of small intestine-specific pathologies like 
celiac disease and Crohn’s disease.26

In the gastrointestinal tract, models incorporated 
in capsule endoscopy usually allow for its tracking and 
localization in different segments (mouth, stomach, 
small intestine, and colon), after excluding frames with 
“noise” (feces, bubbles, etc.), with a sensitivity and spe-
cificity of 88.0%.30 Evaluating images based on their 
topographic location saves study time and enhances 
diagnostic accuracy.30

In the multicenter study published by Ding et al.,30 
a convolutional neural network (CNN) was developed 
for the identification of normal images, inflammation, 
ulcers, polyps, lymphangiectasia, bleeding, vascular di-
sease, diverticula, and parasites, among others. When 
comparing the model’s results with those of participa-
ting gastroenterologists, a sensitivity of 98.9% (95% CI: 
99.7 - 99.9) was obtained vs. 74.6% (95% CI: 73.1 - 
76.0) in the identification of abnormalities per patient, 
and a sensitivity of 99.9% (IC 95%: 99.6 – 99.9) vs. 
76.9% (IC 95%: 75.6 – 78.2)  in lesion analysis. Mo-
reover, the reading time per patient was significantly 
shorter in the CNN group compared to gastroentero-
logists (5.9 ± 2.23 minutes vs. 96.6 ± 22.53 minutes, 
p < 0.001). Based on these results, the researchers con-
cluded that the application of AI in capsule endosco-
py is an important tool to assist gastroenterologists in 
analyzing images captured with this device more effi-
ciently and accurately.31

Models for real-time bleeding detection achieve 
diagnostic accuracy of up to 99.0%.32-34 The model de-
veloped by Aoki et al. detected gastrointestinal bleeding 
with a sensitivity, specificity, and accuracy of 96.6%, 
99.9%, and 99.9%, respectively.31 Other models de-
veloped aid in the stratification and prediction of the 
risk of recurrent bleeding in order to provide timely 
treatment and avoid unnecessary endoscopies.35,36

For the detection of ulcers and erosions, Wang et 
al.´s model achieved a diagnostic accuracy of 92.1%.37 
For the identification of tumors, the diagnostic accu-
racy starts at 86.0%, with a sensitivity ranging from 
88.0% to 97.0%, and specificity between 81.0% and 
96.0%.38

In a recent meta-analysis of CNN in capsule endos-
copy, pooled sensitivity and specificity were obtained as 
follows: 96.0% (95% CI: 91.0 - 98.0) and 97.0% (95% 
CI: 93.0 - 99.0) in the detection of ulcers and erosion; 
97.0% (95% CI: 93.0 - 99.0) and 100% (95% CI: 99.0 

- 100) in the identification of gastrointestinal bleeding; 
and 97.0% (95% CI: 82.0 - 99.0) and 98.0% (95% CI: 
92.0 - 99.0) in the detection of cancer and polyps.37

Furthermore, models developed for the identifica-
tion of inflammatory bowel disease using capsule endos-
copy currently achieve high levels of accuracy (83.3% to 
90.8%),39 and allow the recognition of hidden disease 
patterns as well.4

Compared to current endoscopes which provide 
high-quality images, the image quality of capsule endos-
copy is poor.27 However, AI models for capsule endos-
copy have the advantage of having a robust databases 
fed with a large number of images useful for the creation 
of CNN.

Lower Digestive Endoscopy

Colon

Colorectal cancer (CRC) is currently considered 
one of the leading causes of cancer-related death in 
both men and women.40 For the early identification 
of premalignant lesions (polyps and adenomas), colo-
noscopy remains an essential procedure. However, ac-
cording to the literature, approximately 25% of these 
lesions can be undetected, even by expert hands.41 The 
undetected premalignant lesions increase the risk of 
developing CRC.

Automated systems have been developed for the de-
tection and characterization of polyps. The first systems 
developed used a limited number of images and conse-
quently had a poor diagnostic accuracy (72.0%).42 Sub-
sequently, new models have been trained with higher 
accuracy (> 95.0%) using a larger number of images. 
This makes it possible to better evaluate polyps and tiny 
adenomas (≤ 5 mm), and to predict CRC prognosis, 
patient survival, and distant invasion.42,43

A meta-analysis evaluated the performance of 
CADe systems in the detection of colorectal neopla-
sia.44 The authors found a higher adenoma detection 
rate (ADR) in the groups that used CADe compared to 
their control groups (36.6% vs. 25.2%, relative risks 
(RR): 1.44; 95% CI: 1.27 – 1.62; p < 0.001). Additio-
nally, the detection of adenomas during colonoscopy 
(APC) was superior in the CADe groups compared to 
the control group (50.3% vs. 34.6%; (RR): 1.70; 95% 
CI: 1.53 - 1.89; p < 0.001). The authors did not find a 
significant difference in colonoscopy efficiency (with-
drawal time) between the group that used CADe and 
the control group.44

Robles-Medranda et al. studied the efficiency 
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Figure 4. Detection of polypoid lesion in the colon using a computer-aided detection device (CADe) (AITROL, mdcons-
group, Guayaquil, Ecuador) 

A) Polypoid lesion type I according to NICE classification (orange delineation). B) Polypoid lesion type II according to NICE classification (blue delineation).

BA

of AI-assisted colonoscopy for the detection of po-
lyps and adenomas during CCR screening studies 
(Figure 4).45 The results obtained by the authors 
were compared according to the level of experience 
of the endoscopists (experts vs. non-experts). With 
AI assistance during endoscopic procedures, an in-
crease in the ADR and polyp detection rate (PDR) 
was achieved from 16.5% to 18.2% and from 50.4% 

to 60.0%, respectively. Depending on the experience 
level, the increase in ADR was evident in the junior 
group (10.8% to 16.2%), which approached the level 
of the experts.45

Furthermore, CADx systems have been designed 
with the ability to immediately characterize polyps using 
imaging technologies beyond white-light endoscopy 
and magnified NBI, such as confocal endomicroscopy. 

In this field, a model developed by Sánchez-Montes 
et al. for predicting the histological classification of 
polyps achieved a diagnostic accuracy, sensitivity, and 
specificity of 91.1%, 92.3%, and 89.2%, respectively.46 

Additionally, features such as lesion depression, fold 
convergence, and irregular and heterogeneous capillary 
pattern are associated with deep invasion of premalig-
nant lesions. Current CADe models for the identifica-
tion and detection of the above characteristics sound  
“attractive” to determine the type of treatment to be 
performed (e.g., endoscopic mucosal resection).4

Advanced Endoscopic Techniques

Despite the availability of diagnostic methods such 
as cholangioscopy, endoscopic retrograde cholangio-
pancreatography (ERCP), or EUS for studying the bi-
liopancreatic system, there are difficulties in differentia-
ting lesions and discrepancies among evaluators.

Cholangioscopy

As cholangioscopy is a relatively new advanced en-
doscopic technique without established training guide-

lines, the visual impressions among operators is highly 
variable.47 As a result, several classifications have been 
created to detect malignancy based on the macrosco-
pic characteristics of biliary lesions during the proce-
dure,48-51 with the intention of reducing this variability 
among observers. However, these classifications have 
not achieved that goal.47

Recently, AI models have been developed to assist 
operators in detecting malignant lesions and obtaining 
biopsies. The first AI models in cholangioscopy were 
developed for the detection of tortuous blood vessels, 
but had the disadvantage of being limited to still images 
and were not usable in live cases.52,53 Another limita-
tion of these models is their lack of clinical validation. 
However, these models achieved quite high internal 
validation metrics. In their first study, Mascarenhas et 
al. developed a model using 6475 cholangioscopy ima-
ges obtained from 85 patients. During validation using 
frames, they obtained a sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value 
(NPV) of 99.3%, 99.4%, 99.6%, and 98.7%, respec-
tively.53 Later, they conducted a new study, in which 
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Figure 5. Detection of images suggestive of neoplasia in cholangioscopy through artificial intelligence (AIWorks-Cholan-
gioscopy, mdconsgroup, Guayaquil, Ecuador)

A) Potentially neoplastic area delimited by the AI system using a Spyglass cholangioscope (Boston Scientific, Marlborough, MA, USA). B) Potentially neoplastic area deli-
mited by the AI system using a 7Fr eyeMAX cholangioscope (Micro-Tech, Nanjing, China)

BA

they doubled the number of images obtained from the 
same number of patients (from 6475 to 11855 images); 
this time, they assessed the model’s accuracy in distin-
guishing between benign and malignant lesions. The 
metrics obtained were diagnostic accuracy (94.8%), 
sensitivity (94.7%), specificity (92.1%), PPV (94.8%), 
and NPV (84.2%).52 It is important to note that, even 
though the model achieved excellent internal validation 
parameters, these should not be extrapolated to its rea-
worldl utility in live clinical cases.

Subsequently, two studies with real-time AI models 
were conducted. The first one, conducted by Marya 
et al., evaluated the clinical application of the CNN 
model and compared it to biopsy and cytology results. 
The study found that the CNN model achieved higher 

sensitivity (93.3%), specificity (88.2%), and accuracy 
(90.6%) compared to biopsies (sensitivity 35.7%, spe-
cificity 100%, and accuracy 60.9%, respectively) and 
cytology (sensitivity 40.0%, specificity 100%, and accu-
racy 62.5%, respectively).54 One limitation of the study 
was that only one operator was responsible for annota-
ting around 2 million images, which could lead to errors 
due to fatigue or bias.

Robles-Medranda et al. developed their own CNN 
model capable of detecting neoplastic lesions in pre-
recorded and real-time videos (Figure 5). Following the 
AI model implementation stages (data collection, anno-
tation, and model design), internal validation was perfor-
med, and then a clinical comparison between the model 
and endoscopists (experts and non-experts) was done.55 

This multicenter study was conducted in two phases. 
The first phase involved the development and valida-
tion of the AI model, named AIWorks-Cholangioscopy 
(mdconsgroup, Guayaquil, Ecuador). The initial ver-
sion of this model was developed using 81080 images 
from 23 patients, and achieved a mean average preci-
sion (mAP) of 0.298, an F1-score of 0.280, an intersec-
tion over the union (IoU) of 32.3%, and a total loss of 
0.1034. Despite these acceptable results, the frames per 
second (FPS) detection rate was low (average around 5). 
This low FPS detection prevented the model from being 
used for real-time lesion detection. Its internal valida-
tion obtained a sensitivity, specificity, PPV, and NPV of 
98.0%, 95.0%, 98.0%, and 94.0%, respectively. Subse-

quently, by increasing the number of cases and images 
available for training (from 81080 to 198941 images), 
along with improved image quality, the internal valida-
tion metrics increased dramatically: mAP from 0.298 
to 0.880, F1-score from 0.280 to 0.738, IoU from 
32.3% to 83.2%, and total loss decreased from 0.1034 
to 0.0975. Sensitivity, specificity, PPV, and NPV for 
detecting neoplastic lesions in images had similar results 
to those obtained by Mascarenhas et al. (98.6%, 98.0%, 
89.2%, and 99.2%, respectively).52,53,55 However, du-
ring the second phase for clinical validation in 170 pa-
tients, it was observed that these diagnostic accuracy va-
lues decrease and approached those of the endoscopists. 
When comparing the AI model to the visual impression 
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of endoscopists (experts and non-experts) using two 
classifications of neoplastic lesions (CRM and Mendoza 
classification),48,50 it was evident that the AI model was 
superior to both experts and non-experts.55 This study 
highlights the importance of conducting clinical valida-
tion and not extrapolating internal validation results to 
the clinical setting as the final outcome.

Endoscopic Ultrasound
For the diagnostic and therapeutic management of 

biliopancreatic pathologies, EUS is considered supe-
rior to CT scans and MRI due to its higher diagnostic 
accuracy and ability to obtain higher-quality images.56 
However, these procedures have limitations such as low 
sensitivity to differentiate between benign and malig-
nant intraductal papillary mucinous neoplasia (IPMN) 
and low specificity to differentiate between malignant 
lesions and chronic pancreatitis.57 Another limitation of 
this procedure is its operator-dependence, so less expe-
rienced endoscopists may not appreciate the differen-
ces between chronic pancreatitis and pancreatic malig-
nancy.57 For this reason, the application of AI in such 
procedures would be beneficial and could influence the 
quality of EUS performed by expert endoscopists or 
trainees.58

Several studies have been developed to evaluate and 
compare the diagnostic accuracy of AI-assisted EUS 
versus traditional EUS for detecting pancreatic cancer, 
and to distinguish between chronic lesions and normal 
tissue.55 A study by Norton et al. demonstrated that 
their AI model had higher sensitivity (100%) for the 
differentiation between malignancy and inflammation; 
however, the diagnostic accuracy was similar between 
the model (80%), the endoscopist blinded to proce-
dure results (83.0%) and the traditional procedure 
(85.0%).59 Their study shows the potential of applying 
AI models for image interpretation in EUS and the abi-
lity to differentiate between malignancy and chronic 
conditions; this way they solved one of the limitations 
mentioned above.

Over time, new EUS techniques have been develo-
ped and included as part of patient management. At 
the same time, different types of AI were designed to 
differentiate between benign and malignant pancreatic 
lesions. Sãftoiu et al. evaluated the application of an AI 
model that distinguishes between benign and malignant 
lesions using elastography, a technique that assesses tis-
sue stiffness and elasticity. Based on these parameters, 
high sensitivity (91.4%), specificity (87.9%), and diag-
nostic accuracy (89.7%) were achieved.60 These results 

indicate the potential for applying AI models in elasto-
graphy in cases where EUS-guided fine-needle aspira-
tion yields negative results.

Subsequently, a comparison was made between the 
use of AI-assisted elastography and traditional one. They 
observed that the diagnostic accuracy of the AI-assisted 
procedure (EUS + AI) was higher (AUC: 94.0%) than 
traditional one (UC: 85.0%). This suggests that CNN-
based elastography models can provide decision support 
by offering a quick and accurate image interpretation 
compared to elastography without AI.61

Another limitation of EUS that has been evaluated 
is the differentiation between benign and malignant 
IPMNs. IPMNs are precursors to pancreatic adenocar-
cinomas, and once these lesions progress to invasive sta-
ges, patient prognosis worsens.62

Kuwahara et al., developed a DL model and inves-
tigated whether preoperative analysis of IPMN images 
by EUS using AI can predict malignancy. They com-
pared lesion interpretation with preoperative diagnoses 
by endoscopists, conventional predictive techniques, 
and other EUS techniques.63 The AI model achieved 
an AUC of 91.0% for predicting malignancy. In the 
comparison of diagnostic accuracy between the model 
and the endoscopist, the model was superior (94.0% vs. 
56.0%, respectively).63

Another application of AI in EUS is for the differen-
tial diagnosis of subepithelial lesions (SELs). Hirai et al. 
evaluated a DL model that allowed classification in EUS 
images. They collected images of SELs in the upper di-
gestive tract, including gastrointestinal stromal tumors 
(GISTs), leiomyomas, schwannomas, neuroendocrine 
tumors (NETs), and ectopic pancreas. The model was 
able to classify the aforementioned lesions with an accu-
racy of 86.1%, which was much higher than that of the 
participating endoscopists.64 The sensitivity, specificity, 
and diagnostic accuracy for distinguishing GISTs from 
other lesions were 98.8%, 67.6%, and 89.3%, respecti-
vely.64 Other studies, including meta-analyses compa-
ring accuracy of another CNN model to differentiate 
GISTs from other lesions had similar results.65

Due to the increasing trend of biliopancreatic neo-
plasms worldwide, it’s important to accurately diffe-
rentiate malignant tumor lesions from benign or nor-
mal tissues. The application of AI in biliopancreatic 
endoscopy has been under evaluation for a long time, 
demonstrating promising results. AI and its application 
in medicine is considered beneficial as it will help over-
come the limitations of these complex procedures (cho-
langioscopy and EUS).
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Figure 6. Artificial Intelligence model for endoscopic ultrasound detecting anatomical structures (AIWorks-EUS, mdcons-
group, Guayaquil, Ecuador)

A) Computer-assisted detection (CADe) device detecting the left heart, mitral valve, spine, azygos vein, and aorta using a radial-array endoscopic ultrasound probe; B) 
CADe device detecting the pancreas using a linear-array endoscopic ultrasound probe

BA

Windows	 Anatomic structure

Mediastinal 	 Aorta, vertebral spine, aortic arch, trachea, 	

	 aortopulmonary space

Gastric	 Left kidney, liver, spleen, body and tail of the 	

	 pancreas, celiac trunk, splenic vein and artery, 	

	 inferior vena cava, adrenal gland

Duodenal	 Right kidney, gallbladder, common bile duct, ampulla	

	 of Vater, portal vein

Table 3. Anatomical structures detected by the computer-
assisted detection system AIWorks-EUS (mdconsgroup, 
Guayaquil, Ecuador)

Future Applications of Artificial Intelligence in Di-
gestive Endoscopy

AI has proven to be useful for detecting and clas-
sifying lesions during various types of available and 
studied endoscopic procedures. However, the applica-
tion of intelligent models can go beyond detection and 
diagnosis.

Carlos Robles-Medranda et al. developed an EUS 
system based on CNN models trained to detect nor-
mal anatomical structures in different windows eva-
luated during this advanced procedure (mediastinal, 
gastric, and duodenal) (Figure 6). This allowed the 

identification of 20 anatomical structures with high 
sensitivity and specificity (Table 3).66 The diagnostic 
accuracy of the model for detecting these structures 
was higher than 95.0%. This indicates that AI models 
are not only useful for detecting pathologies but also 
for detecting normal structures, which can benefit the 
training of endoscopists and reinforce the knowledge 
of those more experienced. The application of AI in 
endoscopist training was evaluated by Zhang et al., 
who demonstrated that those trained with AI had a 
shorter learning curve and better results than those 
trained traditionally.67

Additionally, through intelligent models, it is pos-
sible to automate the process of obtaining images for 
report generation and as a measure of test quality.68 
This can be achieved by combining various functions 
and applying them simultaneously, such as detecting 
the evaluated organ along with detecting lesions within 
the same organ. In this way, at the end of the procedu-
re, the study report can be automatically generated.68,69 
Models such as AI-EARS and ISRGS have shown good 
diagnostic accuracy in identifying organs and lesions, 
automatically generating a report using AI in both up-
per68 and lower69 digestive tracts.

The application of AI models to train endoscopists 
in advanced endoscopic procedures can increase their 
effectiveness and reduce the number of procedures nee-
ded to achieve competence.

Conclusion

Despite the goal of automating models during en-
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doscopy to reduce risks associated with human and 
environmental factors, among others, the success of 
AI models will depend on the quality and quantity of 
information used during their training and validation. 
Additionally, external validation through multicenter 
and international studies with expert endoscopists is of 
great importance before generalization and universaliza-
tion of training results.

AI models in digestive endoscopy have the potential 
to improve the visual perception of endoscopists and 
reduce the accuracy gap between those with less expe-
rience and those considered experts. Moreover, they can 
be of great assistance in lesion detection and tissue inva-
sion assessment. A future is envisioned where traditional 
training approaches are surpassed, and medical centers 
worldwide will be able to implement improvements in 
professional training by applying precise technologies 
that reduce the learning curve in these procedures. This 
will benefit less experienced professionals and reduce 
the gap between expert endoscopists and those with less 
experience, ultimately improving their competency.
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