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Summary

Artificial intelligence is a field of science and engineering
that focuses on the computational understanding of inte-
lligent behaviors and the creation of artifacts that exhibit
such behaviors, enabling computers to function and think
like humans. This technology assists in overcoming the
multiple challenges faced by healthcare professionals and
contributes to the diagnosis, management, and prognosis
of patients. Currently, several artificial intelligence models
have been developed for digestive endoscopy, including mo-
dels that allow the detection of anatomical structures that
can assist in the training of physicians, serve as a guide
during endoscopic procedures, or assist in stratifying pre-
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malignant and malignant lesions. This would reduce false
negatives and provide more timely treatments. Compute-
rizged systems for lesion detection and diagnosis exist for
different segments of the digestive tract, each with specific
[functions that provide assistance during procedures. All of
this has been aimed at reducing risks stemming from hu-
man and environmental factors, among others, which can
affect the diagnosis and management of diseases. Artificial
intelligence models for digestive endoscopy can not only
enhance the visual impression of endoscopists but also re-
duce the learning curve through the application of precise
technologies. In this way, the gap between experienced and
less experienced endoscopists is reduced. In this article, the
technological advancements of artificial intelligence in di-
gestive endoscopy and related future aspects are discussed.

Keywords. Artificial intelligence, computer-assisted detec-
tion, computer-assisted diagnosis, deep learning, endoscopy.

La era de la endoscopia inteligente:
como la inteligencia artificial poten-
cia la endoscopia digestivas

Resumen

La inteligencia artificial es un campo de la ciencia e inge-
nieria que se ocupa de la comprension computacional de
comportamientos inteligentes y la creacion de artefactos que
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exhiben tales comportamientos, lo que permite a las com-
putadoras funcionar y pensar de manera similar a la de los
seres humanos. Esta tecnologia ayuda a superar los miiltiples
retos que enfrentan los profesionales de la salud aportando
Javorablemente en el diagndstico, manejo y prondstico de los
pacientes. Actualmente se han desarrollado varios modelos a
nivel de endoscopia digestiva, incluyendo algunos que per-
miten la deteccidn de estructuras anatomicas que pueden
ayudar en el entrenamiento de médicos, como guia durante
procedimientos endoscdpicos o para la estratificacion de le-
siones pre-malignas y malignas, disminuyendo falsos negati-
vos y proporcionar tratamientos oportunos. En la actualidad
existen sistemas computarizados de deteccion de lesiones y
de diagndstico en los distintos segmentos de la via digestiva,
cada uno con funciones particulares que proporcionan asis-
tencia durante los procedimientos. Todo esto se ha llevado
a cabo con el fin de reducir riesgos derivados por facrores
humanos, ambientales, entre otros, los cuales pueden afec-
tar el diagndstico y manejo de enfermedades. Los modelos
de inteligencia artificial para endoscopia digestiva pueden,
ademds de mejorar la impresion visual de los endoscopistas,
disminuir la curva de aprendizaje a través de la aplicacion
de tecnologias precisas, y de esta manera reducir la diferencia
entre endoscopistas expertos y menos expertos. En este articulo
se discuten los avances tecnoldgicos de la inteligencia artificial
en endoscopia digestiva y los aspectos futuros relacionados.

Palabras claves. Inteligencia artificial, deteccion asistida
por computadora, diagndstico asistido por computadora,
aprendizaje profundo, endoscopia.

Abbreviations

AL Artificial Intelligence.

ML: Machine learning.

DL: Deep learning.

CADe: Computer-assisted detection device.
CADx: Computer-assisted diagnostic device.
EUS: Endoscopic ultrasound.

EGD: Esophagogastroduodenoscopy.

AUC: Area under the curve.

BE: Barrett’s Esophagus.

SCEC: Squamous cell esophageal carcinoma.
NBI: Narrow Band Imaging.

GERD: Gastroesophageal reflux disease.
SVM: Support Vector Machine.

CNN: Convolutional Neural Network.

CRC: Colorectal cancer.

ADR: Adenoma Detection Rate.

RR: Relative risk.

APC: Adenoma per Colonoscopy.

PDR: Polyp Detection Rate.

ERCP: Endoscopic retrograde cholangiopancreatography.
PPV: Positive Predictive Value.

NPV: Negative Predictive Value.

mAP: Mean Average Precision.

EPS: Frames per Second.

LoU: Intersection over the union.

CT: Computerized tomography.

MRI: Magnetic resonance imaging.

IPMN: Intraductal papillary mucinous neoplasm.
SEL: Subepithelial Lesion.

GIST: Gastrointestinal Stromal Tumor.

NET: Neuroendocrine Tumor.

Introduction
Artificial Intelligence: Basic Concepts

Artificial intelligence (Al) is a branch of computer
science whose purpose is the understanding and execution
of intelligent insights from a set of computational models.1
Using a set of algorithms, Al is capable of functioning and
reasoning like a human being through a learning process
based on training and has the advantage of being able to
complete it in less time than a human being.! Additionally,
this technology can incorporate machine learning (ML)
and its subset, deep learning (DL).?

ML is a subgroup of Al characterized by the use of
mathematical models for learning from data, which later
enables pattern recognition.’ Predictive models are crea-
ted from algorithms, allowing for data analysis and the
resolution of complex problems. Additionally, ML can
be categorized into three types: supervised, unsupervised,

and reinforcement>*:

a) Supervised learning: this type of learning is based
on training using well-categorized or labeled data (exter-
nal supervision). Labeled data is divided for both training
and internal validation. Supervised learning is based on
regression, classification, and characterization.>?

b) Unsupervised learning: this model learns from unca-
tegorized data, enabling the algorithm to operate without
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any guidance, relying on the understanding of patterns
and thus requiring a greater amount of information.*

¢) Reinforcement learning: it does not require data or
supervision to learn; instead, it is based on learning from
the environment through rewards.*’

DL is a specialized category of ML that is based on the
architecture of neural networks resembling those in the
human brain.? It consists of an initial layer that receives
input; this layer if followed by a set of hidden middle la-
yers, and then the final output layer (Figure 1). Each layer
in this network comprises a group of neurons or nodes
that transform (activate) an input into an output through
mathematical functions.” The output of a previous layer

serves as the input for the next layer, and so on, until
reaching the output layer to obtain a final outcome or
detection.??

The development of a detection model based on DL
involves three main phases. In the first phase, data (ima-
ges or videos) is collected, and the structures to be used
in training the model are properly labeled. Next, in the
second phase, the model’s architecture is established, and
neural networks are created (input layer, middle layer,
and output layer). Finally, in the third phase, the sam-
ples obtained in the previous phases are used to train the
model and subsequently validate it internally (Figure 2).!
The metrics for evaluating the model’s performance are

obtained from this final phase (Table 1).

Figure 1. Schematic representation of the architecture of convolutional neural network models

Input layer

Middle (Hidden) layer

Output layer
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Figure 2. Phases of deep learning model development

A

! m
B
C Training Database

Validation Database

A) Data collection and labeling phase. B) Model architecture establishment. C) Model training phase using samples obtained in the first phase.
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Table 1. Metrics obtained for the performance evaluation
of deep learning models

Metrics Definition

Sensitivity:  The fraction of positive samples classified as positive by
the model.

Specificity:  The fraction of negative samples classified as negative
by the model.

Precision: The fraction of positively classified samples which are
truly positive.

F1-Score: The harmonic means of precision and sensitivity.

loU: The performance of object detection by comparing the

“ground truth” bounding box to the predicted bounding box.

loU: Intersection over the union.

Clinical Applications of Artificial Intelligence

Clinical applications of Al have progressively increa-
sed in the field of healthcare, including gastroenterolo-
gy. Al helps overcome the numerous challenges faced
by healthcare professionals during data acquisition,
analysis, and knowledge application that contributes to
patient diagnosis, management, and prognosis." Addi-
tionally, automation in image identification and recog-
nition assists in reducing errors stemming from human
factors (fatigue and workload, among others).

Technological advancements have led to the deve-
lopment of intelligent systems that facilitate the de-
tection or the stratification of lesions observed during
endoscopic or imaging procedures. These are referred
to as computer-assisted detection device (CADe) or
computer-assisted diagnostic device (CADx).® Thus,
the application of these devices in digestive endoscopy
can facilitate and increase lesion detection during pro-
cedures and categorize lesions as benign or malignant
in real-time.

Artificial intelligence in Digestive Endoscopy

Currently, several models have been developed for
upper and lower gastrointestinal endoscopy, as well as
for advanced endoscopic procedures such as cholan-
gioscopy and endoscopic ultrasound (EUS) (Table 2).
These models encompass both CADe and CADx sys-
tems, each employing distinct algorithms that enable
different functionalities. These functionalities include
identifying anatomical structures and specific lesions,
assisting in physician training or serving a guide during

Acta Gastroenterol Latinoam 2023;53(3):226-240

endoscopic procedures, reducing the number of false
negatives through characterization and stratification of
premalignant and malignant lesions, among others.*

In the following sections, we will review updated in-
formation on the uses of Al and its impact according to
the type of endoscopic assessment.

Table 2. Applications of artificial intelligence in different
segments of the digestive system

Segment Al Applications

Esophagus e BE early detection and diagnosis
e | esion classification (benign or malignant)
e Esophageal carcinoma detection

e Tumoral lesions invasion

Stomach e Blindspot surveillance

e Detection of lesions suggestive of neoplasia

e Tumoral lesions invasion

e Differentiation between normal and pathological tissues
e GERD detection

e H. pylori-associated gastritis detection

Small
Intestine

e | esion detection and classification (polyps, bleeding,
ulcers, among others)
e Evaluation of celiac and Crohn’s disease

Colon e Polyp detection and characterization

e Assistance during screening colonoscopy

Biliary tract e Detection of areas suggestive of neoplasia
e |dentification of normal structures

e Guidance during biopsy sampling

Al: Artificial intelligence; BE: Barrett’s esophagus; GERD: Gastroesophageal reflux
disease.

Upper Digestive Endoscopy

Also known as esophagogastroduodenoscopy (EGD),
this procedure is of great importance in the diagnosis
of upper gastrointestinal tract lesions.”® However, the
diagnostic rate varies according to the performance of
the endoscopist.” Errors during EGD are one of the lea-
ding causes of incorrect diagnosis of premalignant le-
sions and severe esophagogastricduodenal diseases. Al
systems have been developed to overcome the technical
challenges described above. Their use in the upper di-
gestive tract ranges from anatomical localization to the
detection and evaluation of malignant and premalig-
nant lesions.”""

Takiyama ez al. developed an Al model capable of
classifying anatomical structures in the upper digestive
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tract, which has shown excellent performance in iden-
tifying the larynx (AUC 1.00), the esophagus (AUC
1.00), the stomach (upper, middle, and lower portions),
and the duodenum (AUC 0.99).”

On the other hand, in the multicenter study con-
ducted by Luo ez al., the diagnostic accuracy of the
GRADIS model for detecting upper digestive tract neo-
plasms (esophagus and stomach) was evaluated. This
model achieved a diagnostic accuracy of 95.5% (95%
CI: 95.2 - 95.7) during internal validation. When com-
paring its performance with endoscopists of different
expertise levels, it showed similar sensitivity to experts
(94.2% vs. 94.5%), and higher sensitivity compared to
competent endoscopists (94.2% vs. 85.8%) and trainees
(94.2% vs. 72.2%)."" Additionally, the diagnostic accu-
racy of experts (92.8%) when using the Al model was
similar to that of the group of competent endoscopists
(93.4%) and trainees (90.4%).!"" This demonstrates that
the application of Al can narrow the gap between ex-
perts and non-experts.''

Esophagus

Accuracy in the early diagnosis of Barrett’s esopha-
gus (BE) and esophageal neoplasia remains a challenge,
even for many experienced endoscopists. Once BE is
identified, the identification of regions with dysplasia
or early adenocarcinoma becomes necessary.

Al models have been designed to assist endoscopists
in improving the accuracy of diagnosing these lesions,'>
including systems for neoplasia classification using real-
time magnification with high precision (89.9%), which
have enabled early diagnosis and differentiation of neo-
plasia in BE.!>!4

The CADx system developed and validated by de
Groof et al. allowed for the classification of neoplas-
tic and non-neoplastic images in BE compared to the
performance of 53 endoscopists. The model outperfor-
med the endoscopists’ performance and achieved hig-
her accuracy (88.0% vs. 73.0%), sensitivity (93.0% vs.
72.0%), and specificity (83.0% vs. 74.0%)."

On the other hand, due to the significant impor-
tance of recognizing and treating esophageal carcino-
ma promptly, researchers have developed systems that
enable lesion detection as well as the assessment of di-
sease invasion.'>'®!” Esophageal carcinoma is often de-
tected at advanced stages, and small lesions are usually
detected by highly experienced endoscopists.'> Al allows
for the detection of lesions smaller than 10 mm with
high accuracy (91.4%), even surpassing that of many
so-called expert endoscopists (> 15 years of experience,

88.8%), those with moderate experience (5 - 15 years,
81.6%), and those with limited experience (< 5 years,
77.2%).'¢

Determining the depth of the lesion enables the se-
lection of the appropriate treatment (surgical, endosco-
pic, pharmacological), and prognosis assessment."” One
of the models with high diagnostic accuracy in predic-
ting the depth of invasion of squamous cell esophageal
carcinoma (SCEC) is proposed by Tokai ez al. Resear-
chers used 1751 images for training and 291 images
for validation, achieving a sensitivity of 84.1% and a
diagnostic accuracy of 80.9% in estimating the depth of
SCEC invasion. When compared to thirteen endosco-

pists, this model showed higher diagnostic accuracy and
a greater AUC."

Stomach

Stomach cancer usually shows nonspecific symp-
toms during its early stages, and that’s why patients are
often diagnosed at advanced stages. The prognosis of
stomach cancer depends on the assessment of the depth
of the lesion and its early detection. It has been reported
that the early detection of stomach cancer can increase
5-year survival rates to 90.0%."®

According to Menon et al., the rate of false negati-
ves in the diagnosis of early stomach cancer can reach
up to 25.0%.'8 Automation systems aim to reduce this
percentage with models that classify stomach images in
EGD to monitor blind spots with high precision," mo-
dels that detect lesions suggestive of stomach cancer!
and precancerous lesions,” and that further assess the
depth of invasion.”

Chromoendoscopy is one of the diagnostic methods
used for the early detection of gastric neoplasm. Howe-
ver, during an endoscopic session, multiple video frames
can be generated, making the review process an exhaus-
tive task for endoscopists.

To prevent losses during evaluation, Ali ez al. deve-
loped a CADx trained to classify frames as normal or
pathological based on local and global texture. This mo-
del showed a sensitivity, specificity, precision, and AUC
0f 91.0%, 82.0%, 87.0%, and 0.91, respectively.?* The
model proved to be a diagnostic aid in the early detec-
tion of gastric cancer since it reduces the time used for
the evaluation of endoscopic sequence.

The model studied by Wu ez al. ** showed high accu-
racy, specificity, and sensitivity (92.5%, 94.0%, 91.0%,
respectively) in assessing non-malignancy, and surpassing
expert endoscopists in this task."” Additionally, during
real-time procedures, it showed excellent performance in
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early gastric adenocarcinoma detection with blind-spot
monitoring. Additionally, other Al models have shown
high accuracy in diagnosing gastrointestinal neoplasia
comparable to that of expert endoscopists.'""”

Furthermore, models have been developed that not
only identify neoplastic lesions but also predict their
depth. Nagao ez al. trained a model to predict the depth
of invasion of gastric cancer using conventional white-
light images, narrow band imaging (NBI) images, and
images with indigo carmine contrast.”’ The model
showed high accuracy across all three systems (white-
light images 94.5%, NBI 94.3%, and indigo carmine
95.5%).%

Zhu et al. (total accuracy 89.2%) and Yoon ez al.
(sensitivity 81.7%. specificity 75.4%) have reported
diagnostic accuracy of their models for assessing inva-
sion depth, which is comparable to that of other con-
ventional methods. The advantages of using these mo-
dels lie in the more objective assessment of macroscopic
lesion characteristics, reducing the need for other inva-
sive techniques like EUS.2"2>2

In addition to neoplasia identification, other appli-
cations include the detection of gastroesophageal reflux
disease (GERD)* and H. pylori-associated gastritis.*®
Models developed to assist in classifying GERD with
NBI have achieved a total diagnostic accuracy of 99.2%
for grade A-B lesions, 100% for grade C-D lesions, and
100% in the control group. Therefore, these models are
considered highly useful for assisting in the automatic
detection of lesions consistent with GERD, and increa-

se diagnostic accuracy for trainees.”

On the other hand, the neural network designed
for predicting H. pylori in endoscopic images correctly
diagnosed 80% of negative cases, 84% of eradicated ca-
ses, and 48% of positive cases. The authors of this study
emphasize the utility of this model in identifying pa-
tients who may require additional confirmation testing
for H. pylori based on endoscopic results, and recom-
mend its use as a diagnostic aid.*

Small Intestine

Capsule endoscopy, as a non-invasive procedure
allows for the detection and classification of lesions
(bleeding, ulcers, and polyps), assessment of intestinal
motility, and evaluation of conditions like celiac disease
and other pathologies that primarily affect the small in-
testine. However, the evaluation of the large number of
obtained images (> 60 000) and the difficulty in direc-
ting the capsule (completely dependent on gastrointes-
tinal peristalsis) make the procedure slow (from 45 mi-
nutes to 8 hours) and tedious. To address the technical
difficulties associated with this procedure, automation
using Al has been explored.”®

Al models for capsule endoscopy have been develo-
ped based on DL. Image classification and categorization
are performed using support vector machines (SVMs).
These models separate data using hyperplanes in two or
more dimensions. After employing Kernel parameters,
an “optimal” hyperplane is determined, which creates
“boundaries” for data categorization (Figure 3).”*® Fo-
llowing categorization, DL algorithms are used to create
artificial neural networks.””*

Figure 3. Support vector machines (SVM) for data classification

A

KERNEL

H1

A) Linear classification with hyperplanes (H1, H2, H3) by SVM. B) Data classified with an optimal hyperplane (H1) after Kernel parameters.
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Currently, Al models for capsule endoscopy include
capsule tracking, detection of polyps, bleeding, ulcers,
and the study of small intestine-specific pathologies like
celiac disease and Crohn’s disease.?

In the gastrointestinal tract, models incorporated
in capsule endoscopy usually allow for its tracking and
localization in different segments (mouth, stomach,
small intestine, and colon), after excluding frames with
“noise” (feces, bubbles, etc.), with a sensitivity and spe-
cificity of 88.0%.%° Evaluating images based on their
topographic location saves study time and enhances
diagnostic accuracy.’

In the multicenter study published by Ding ez al.,*
a convolutional neural network (CNN) was developed
for the identification of normal images, inflammation,
ulcers, polyps, lymphangiectasia, bleeding, vascular di-
sease, diverticula, and parasites, among others. When
comparing the model’s results with those of participa-
ting gastroenterologists, a sensitivity of 98.9% (95% CI:
99.7 - 99.9) was obtained vs. 74.6% (95% CI: 73.1 -
76.0) in the identification of abnormalities per patient,
and a sensitivity of 99.9% (IC 95%: 99.6 — 99.9) vs.
76.9% (IC 95%: 75.6 — 78.2) in lesion analysis. Mo-
reover, the reading time per patient was significantly
shorter in the CNN group compared to gastroentero-
logists (5.9 + 2.23 minutes vs. 96.6 + 22.53 minutes,
2 < 0.001). Based on these results, the researchers con-
cluded that the application of Al in capsule endosco-
py is an important tool to assist gastroenterologists in
analyzing images captured with this device more effi-
ciently and accurately.”!

Models for real-time bleeding detection achieve
diagnostic accuracy of up to 99.0%.>*** The model de-
veloped by Aoki ez al. detected gastrointestinal bleeding
with a sensitivity, specificity, and accuracy of 96.6%,
99.9%, and 99.9%, respectively.’ Other models de-
veloped aid in the stratification and prediction of the
risk of recurrent bleeding in order to provide timely
treatment and avoid unnecessary endoscopies.?>*

For the detection of ulcers and erosions, Wang ez
al.’s model achieved a diagnostic accuracy of 92.1%.%
For the identification of tumors, the diagnostic accu-
racy starts at 86.0%, with a sensitivity ranging from
88.0% to 97.0%, and specificity between 81.0% and
96.0%.%

In a recent meta-analysis of CNN in capsule endos-
copy, pooled sensitivity and specificity were obtained as
follows: 96.0% (95% CI: 91.0 - 98.0) and 97.0% (95%
CI: 93.0 - 99.0) in the detection of ulcers and erosion;
97.0% (95% CI: 93.0 - 99.0) and 100% (95% CI: 99.0

- 100) in the identification of gastrointestinal bleeding;
and 97.0% (95% CI: 82.0 - 99.0) and 98.0% (95% ClI:
92.0 - 99.0) in the detection of cancer and polyps.”

Furthermore, models developed for the identifica-
tion of inflammatory bowel disease using capsule endos-
copy currently achieve high levels of accuracy (83.3% to
90.8%),” and allow the recognition of hidden disease
patterns as well.*

Compared to current endoscopes which provide
high-quality images, the image quality of capsule endos-
copy is poor.”” However, Al models for capsule endos-
copy have the advantage of having a robust databases
fed with a large number of images useful for the creation

of CNN.

Lower Digestive Endoscopy
Colon

Colorectal cancer (CRC) is currently considered
one of the leading causes of cancer-related death in
both men and women.” For the early identification
of premalignant lesions (polyps and adenomas), colo-
noscopy remains an essential procedure. However, ac-
cording to the literature, approximately 25% of these
lesions can be undetected, even by expert hands.*’ The
undetected premalignant lesions increase the risk of
developing CRC.

Automated systems have been developed for the de-
tection and characterization of polyps. The first systems
developed used a limited number of images and conse-
quently had a poor diagnostic accuracy (72.0%).% Sub-
sequently, new models have been trained with higher
accuracy (> 95.0%) using a larger number of images.
This makes it possible to better evaluate polyps and tiny
adenomas (< 5 mm), and to predict CRC prognosis,
patient survival, and distant invasion.*>*

A meta-analysis evaluated the performance of
CADe systems in the detection of colorectal neopla-
sia.* The authors found a higher adenoma detection
rate (ADR) in the groups that used CADe compared to
their control groups (36.6% vs. 25.2%, relative risks
(RR): 1.44; 95% CI: 1.27 — 1.62; p < 0.001). Additio-
nally, the detection of adenomas during colonoscopy
(APC) was superior in the CADe groups compared to
the control group (50.3% vs. 34.6%; (RR): 1.70; 95%
CIl: 1.53 - 1.89; p < 0.001). The authors did not find a
significant difference in colonoscopy efficiency (with-
drawal time) between the group that used CADe and

the control group.*
Robles-Medranda ez al. studied the efficiency
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of Al-assisted colonoscopy for the detection of po-
lyps and adenomas during CCR screening studies
(Figure 4).® The results obtained by the authors
were compared according to the level of experience
of the endoscopists (experts vs. non-experts). With
Al assistance during endoscopic procedures, an in-
crease in the ADR and polyp detection rate (PDR)
was achieved from 16.5% to 18.2% and from 50.4%

to 60.0%, respectively. Depending on the experience
level, the increase in ADR was evident in the junior
group (10.8% to 16.2%), which approached the level
of the experts.®

Furthermore, CADx systems have been designed
with the ability to immediately characterize polyps using
imaging technologies beyond white-light endoscopy
and magnified NBI, such as confocal endomicroscopy.

Figure 4. Detection of polypoid lesion in the colon using a computer-aided detection device (CADe) (AITROL, mdcons-
group, Guayaquil, Ecuador)

O 4

A) Polypoid lesion type | according to NICE classification (orange delineation). B) Polypoid lesion type Il according to NICE classification (blue delineation).

In this field, a model developed by Sdnchez-Montes
et al. for predicting the histological classification of
polyps achieved a diagnostic accuracy, sensitivity, and
specificity of 91.1%, 92.3%, and 89.2%, respectively.*
Additionally, features such as lesion depression, fold
convergence, and irregular and heterogeneous capillary
pattern are associated with deep invasion of premalig-
nant lesions. Current CADe models for the identifica-
tion and detection of the above characteristics sound
“attractive” to determine the type of treatment to be
performed (e.g., endoscopic mucosal resection).

Advanced Endoscopic Techniques

Despite the availability of diagnostic methods such
as cholangioscopy, endoscopic retrograde cholangio-
pancreatography (ERCP), or EUS for studying the bi-
liopancreatic system, there are difficulties in differentia-
ting lesions and discrepancies among evaluators.

Cholangioscopy

As cholangioscopy is a relatively new advanced en-
doscopic technique without established training guide-

Acta Gastroenterol Latinoam 2023;53(3):226-240

lines, the visual impressions among operators is highly
variable.*” As a result, several classifications have been
created to detect malignancy based on the macrosco-
pic characteristics of biliary lesions during the proce-
dure,*®! with the intention of reducing this variability
among observers. However, these classifications have
not achieved that goal.”’

Recently, Al models have been developed to assist
operators in detecting malignant lesions and obtaining
biopsies. The first Al models in cholangioscopy were
developed for the detection of tortuous blood vessels,
but had the disadvantage of being limited to still images
and were not usable in live cases.’>>> Another limita-
tion of these models is their lack of clinical validation.
However, these models achieved quite high internal
validation metrics. In their first study, Mascarenhas ez
al. developed a model using 6475 cholangioscopy ima-
ges obtained from 85 patients. During validation using
frames, they obtained a sensitivity, specificity, positive
predictive value (PPV), and negative predictive value

(NPV) of 99.3%, 99.4%, 99.6%, and 98.7%, respec-

tively.” Later, they conducted a new study, in which
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they doubled the number of images obtained from the
same number of patients (from 6475 to 11855 images);
this time, they assessed the model’s accuracy in distin-
guishing between benign and malignant lesions. The
metrics obtained were diagnostic accuracy (94.8%),
sensitivity (94.7%), specificity (92.1%), PPV (94.8%),
and NPV (84.2%).>* It is important to note that, even
though the model achieved excellent internal validation
parameters, these should not be extrapolated to its rea-
worldl utility in live clinical cases.

Subsequently, two studies with real-time AI models
were conducted. The first one, conducted by Marya
et al., evaluated the clinical application of the CNN

model and compared it to biopsy and cytology results.
The study found that the CNN model achieved higher

sensitivity (93.3%), specificity (88.2%), and accuracy
(90.6%) compared to biopsies (sensitivity 35.7%, spe-
cificity 100%, and accuracy 60.9%, respectively) and
cytology (sensitivity 40.0%, specificity 100%), and accu-
racy 62.5%, respectively).”* One limitation of the study
was that only one operator was responsible for annota-
ting around 2 million images, which could lead to errors
due to fatigue or bias.

Robles-Medranda ez al. developed their own CNN
model capable of detecting neoplastic lesions in pre-
recorded and real-time videos (Figure 5). Following the
Al model implementation stages (data collection, anno-
tation, and model design), internal validation was perfor-
med, and then a clinical comparison between the model
and endoscopists (experts and non-experts) was done.”

Figure 5. Detection of images suggestive of neoplasia in cholangioscopy through artificial intelligence (AIWorks-Cholan-
gioscopy, mdconsgroup, Guayaquil, Ecuador)

A) Potentially neoplastic area delimited by the Al system using a Spyglass cholangioscope (Boston Scientific, Marlborough, MA, USA). B) Potentially neoplastic area deli-
mited by the Al system using a 7Fr eyeMAX cholangioscope (Micro-Tech, Nanjing, China)

This multicenter study was conducted in two phases.
The first phase involved the development and valida-
tion of the Al model, named AIWorks-Cholangioscopy
(mdconsgroup, Guayaquil, Ecuador). The initial ver-
sion of this model was developed using 81080 images
from 23 patients, and achieved a mean average preci-
sion (mAP) of 0.298, an F1-score of 0.280, an intersec-
tion over the union (IoU) of 32.3%, and a total loss of
0.1034. Despite these acceptable results, the frames per
second (FPS) detection rate was low (average around 5).
This low FPS detection prevented the model from being
used for real-time lesion detection. Its internal valida-
tion obtained a sensitivity, specificity, PPV, and NPV of
98.0%, 95.0%, 98.0%, and 94.0%, respectively. Subse-

quently, by increasing the number of cases and images
available for training (from 81080 to 198941 images),
along with improved image quality, the internal valida-
tion metrics increased dramatically: mAP from 0.298
to 0.880, Fl-score from 0.280 to 0.738, IoU from
32.3% to 83.2%, and total loss decreased from 0.1034
to 0.0975. Sensitivity, specificity, PPV, and NPV for
detecting neoplastic lesions in images had similar results
to those obtained by Mascarenhas ez a/. (98.6%, 98.0%,
89.2%, and 99.2%, respectively).’>>>>> However, du-
ring the second phase for clinical validation in 170 pa-
tients, it was observed that these diagnostic accuracy va-
lues decrease and approached those of the endoscopists.
When comparing the Al model to the visual impression
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of endoscopists (experts and non-experts) using two
classifications of neoplastic lesions (CRM and Mendoza
classification),*®° it was evident that the Al model was
superior to both experts and non-experts.” This study
highlights the importance of conducting clinical valida-
tion and not extrapolating internal validation results to
the clinical setting as the final outcome.

Endoscopic Ultrasound

For the diagnostic and therapeutic management of
biliopancreatic pathologies, EUS is considered supe-
rior to CT scans and MRI due to its higher diagnostic
accuracy and ability to obtain higher-quality images.>®
However, these procedures have limitations such as low
sensitivity to differentiate between benign and malig-
nant intraductal papillary mucinous neoplasia (IPMN)
and low specificity to differentiate between malignant
lesions and chronic pancreatitis.”” Another limitation of
this procedure is its operator-dependence, so less expe-
rienced endoscopists may not appreciate the differen-
ces between chronic pancreatitis and pancreatic malig-
nancy.”” For this reason, the application of Al in such
procedures would be beneficial and could influence the
quality of EUS performed by expert endoscopists or
trainees.’®

Several studies have been developed to evaluate and
compare the diagnostic accuracy of Al-assisted EUS
versus traditional EUS for detecting pancreatic cancer,
and to distinguish between chronic lesions and normal
tissue.” A study by Norton e a/. demonstrated that
their AI model had higher sensitivity (100%) for the
differentiation between malignancy and inflammation;
however, the diagnostic accuracy was similar between
the model (80%), the endoscopist blinded to proce-
dure results (83.0%) and the traditional procedure
(85.0%).>° Their study shows the potential of applying
Al models for image interpretation in EUS and the abi-
lity to differentiate between malignancy and chronic
conditions; this way they solved one of the limitations
mentioned above.

Over time, new EUS techniques have been develo-
ped and included as part of patient management. At
the same time, different types of Al were designed to
differentiate between benign and malignant pancreatic
lesions. Saftoiu ez al. evaluated the application of an Al
model that distinguishes between benign and malignant
lesions using elastography, a technique that assesses tis-
sue stiffness and elasticity. Based on these parameters,
high sensitivity (91.4%), specificity (87.9%), and diag-

nostic accuracy (89.7%) were achieved.® These results
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indicate the potential for applying Al models in elasto-
graphy in cases where EUS-guided fine-needle aspira-
tion yields negative results.

Subsequently, a comparison was made between the
use of Al-assisted elastography and traditional one. They
observed that the diagnostic accuracy of the Al-assisted
procedure (EUS + Al) was higher (AUC: 94.0%) than
traditional one (UC: 85.0%). This suggests that CNN-
based elastography models can provide decision support
by offering a quick and accurate image interpretation
compared to elastography without AL

Another limitation of EUS that has been evaluated
is the differentiation between benign and malignant
IPMNs. IPMNs are precursors to pancreatic adenocar-
cinomas, and once these lesions progress to invasive sta-
ges, patient prognosis worsens.*?

Kuwahara ez al., developed a DL model and inves-
tigated whether preoperative analysis of IPMN images
by EUS using Al can predict malignancy. They com-
pared lesion interpretation with preoperative diagnoses
by endoscopists, conventional predictive techniques,
and other EUS techniques.®® The Al model achieved
an AUC of 91.0% for predicting malignancy. In the
comparison of diagnostic accuracy between the model
and the endoscopist, the model was superior (94.0% vs.
56.0%, respectively).®

Another application of Al in EUS is for the differen-
tial diagnosis of subepithelial lesions (SELs). Hirai ez /.
evaluated a DL model that allowed classification in EUS
images. They collected images of SELs in the upper di-
gestive tract, including gastrointestinal stromal tumors
(GISTs), leiomyomas, schwannomas, neuroendocrine
tumors (NETs), and ectopic pancreas. The model was
able to classify the aforementioned lesions with an accu-
racy of 86.1%, which was much higher than that of the
participating endoscopists.® The sensitivity, specificity,
and diagnostic accuracy for distinguishing GIST's from
other lesions were 98.8%, 67.6%, and 89.3%, respecti-
vely.®* Other studies, including meta-analyses compa-
ring accuracy of another CNN model to differentiate
GISTs from other lesions had similar results.®

Due to the increasing trend of biliopancreatic neo-
plasms worldwide, it’s important to accurately diffe-
rentiate malignant tumor lesions from benign or nor-
mal tissues. The application of Al in biliopancreatic
endoscopy has been under evaluation for a long time,
demonstrating promising results. Al and its application
in medicine is considered beneficial as it will help over-
come the limitations of these complex procedures (cho-
langioscopy and EUS).
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Future Applications of Artificial Intelligence in Di-
gestive Endoscopy

Al has proven to be useful for detecting and clas-
sifying lesions during various types of available and
studied endoscopic procedures. However, the applica-
tion of intelligent models can go beyond detection and
diagnosis.

Carlos Robles-Medranda ez al. developed an EUS
system based on CNN models trained to detect nor-
mal anatomical structures in different windows eva-
luated during this advanced procedure (mediastinal,
gastric, and duodenal) (Figure 6). This allowed the

identification of 20 anatomical structures with high
sensitivity and specificity (Table 3).° The diagnostic
accuracy of the model for detecting these structures
was higher than 95.0%. This indicates that Al models
are not only useful for detecting pathologies but also
for detecting normal structures, which can benefit the
training of endoscopists and reinforce the knowledge
of those more experienced. The application of Al in
endoscopist training was evaluated by Zhang ez al.,
who demonstrated that those trained with Al had a
shorter learning curve and better results than those
trained traditionally.®

Figure 6. Artificial Intelligence model for endoscopic ultrasound detecting anatomical structures (AIWorks-EUS, mdcons-

group, Guayaquil, Ecuador)

A) Computer-assisted detection (CADe) device detecting the left heart, mitral valve, spine, azygos vein, and aorta using a radial-array endoscopic ultrasound probe; B)

CADe device detecting the pancreas using a linear-array endoscopic ultrasound probe

Table 3. Anatomical structures detected by the computer-
assisted detection system AIWorks-EUS  (mdconsgroup,
Guayaquil, Ecuador)

Windows Anatomic structure

Mediastinal Aorta, vertebral spine, aortic arch, trachea,
aortopulmonary space

Gastric Left kidney, liver, spleen, body and tail of the
pancreas, celiac trunk, splenic vein and artery,
inferior vena cava, adrenal gland

Duodenal Right kidney, gallbladder, common bile duct, ampulla

of Vater, portal vein

Additionally, through intelligent models, it is pos-
sible to automate the process of obtaining images for
report generation and as a measure of test quality.®®
This can be achieved by combining various functions
and applying them simultaneously, such as detecting
the evaluated organ along with detecting lesions within
the same organ. In this way, at the end of the procedu-
re, the study report can be automatically generated.®**
Models such as AI-EARS and ISRGS have shown good
diagnostic accuracy in identifying organs and lesions,
automatically generating a report using Al in both up-
per®® and lower® digestive tracts.

The application of Al models to train endoscopists
in advanced endoscopic procedures can increase their
effectiveness and reduce the number of procedures nee-
ded to achieve competence.

Conclusion

Despite the goal of automating models during en-
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doscopy to reduce risks associated with human and
environmental factors, among others, the success of
Al models will depend on the quality and quantity of
information used during their training and validation.
Additionally, external validation through multicenter
and international studies with expert endoscopists is of
great importance before generalization and universaliza-
tion of training results.

Al models in digestive endoscopy have the potential
to improve the visual perception of endoscopists and
reduce the accuracy gap between those with less expe-
rience and those considered experts. Moreover, they can
be of great assistance in lesion detection and tissue inva-
sion assessment. A future is envisioned where traditional
training approaches are surpassed, and medical centers
worldwide will be able to implement improvements in
professional training by applying precise technologies
that reduce the learning curve in these procedures. This
will benefit less experienced professionals and reduce
the gap between expert endoscopists and those with less
experience, ultimately improving their competency.
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