La era de la endoscopia inteligente: cómo la inteligencia artificial potencia la endoscopia digestiva

Autores/as

  • Jorge Baquerizo-Burgos Departamento de Endoscopia, Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador. https://orcid.org/0000-0002-6741-4211
  • María Egas-Izquierdo Departamento de Endoscopia, Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador.
  • Doménica Cunto Departamento de Endoscopia, Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador. https://orcid.org/0000-0003-1337-7096
  • Carlos Robles-Medranda Departamento de Endoscopia, Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador. https://orcid.org/0000-0003-2434-3369

DOI:

https://doi.org/10.52787/agl.v53i3.339

Palabras clave:

Inteligencia artificial, detección asistida por computadora, diagnóstico asistido por computadora, aprendizaje profundo, endoscopia

Resumen

La inteligencia artificial es un campo de la ciencia y la ingeniería que se ocupa de la comprensión computacional de comportamientos inteligentes y la creación de artefactos que exhiben tales comportamientos, lo que permite a las computadoras funcionar y pensar de manera similar a la de los seres humanos. Esta tecnología ayuda a superar los múltiples retos que enfrentan los profesionales de la salud y aporta al diagnóstico, al manejo y al pronóstico de los pacientes. Actualmente se están desarrollando varios modelos para la endoscopia digestiva, incluyendo algunos que permiten la detección de estructuras anatómicas que pueden ayudar en el entrenamiento de los médicos, servir como guía durante los procedimientos endoscópicos o para la estratificación de lesiones premalignas y malignas. De esta forma disminuirían los falsos negativos y se proporcionarían más tratamientos oportunos. En la actualidad existen sistemas computarizados de detección de lesiones y de diagnóstico en los distintos segmentos de la vía digestiva, cada uno con funciones particulares que proporcionan asistencia durante los procedimientos. Todo esto se ha llevado a cabo con el fin de reducir los riesgos derivados de los factores humanos y ambientales, entre otros, los cuales pueden afectar el diagnóstico y el manejo de las enfermedades. Los modelos de inteligencia artificial en la endoscopia digestiva pueden, además de mejorar la impresión visual de los endoscopistas, disminuir la curva de aprendizaje a través de la aplicación de tecnologías precisas. De esta manera, se reduce la diferencia entre los endoscopistas expertos y menos expertos. En este artículo se discuten los avances tecnológicos de la inteligencia artificial en la endoscopia digestiva y los aspectos futuros relacionados.

Citas

-1. Ramesh AN, Kambhampati C, Monson JRT, Drew PJ. Artificial Intelligence in Medicine. Ann R Coll Surg Engl. 2004;86(5):334-8.

-2. Tonozuka R, Mukai S, Itoi T. The Role of Artificial Intelligence in Endoscopic Ultrasound for Pancreatic Disorders. Diagnostics. 2021;11(1).

-3. Minoda Y, Ihara E, Fujimori N, Nagatomo S, Esaki M, Hata Y, et al. Efficacy of Ultrasound Endoscopy with Artificial Intelligence for the Differential Diagnosis of Non-Gastric Gastrointestinal Stromal Tumors. Sci Rep. 2022;12(1).

-4. Kröner PT, Engels MM, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, et al. Artificial Intelligence in Gastroenterology: A State-Of-The-Art Review. World J Gastroenterol. 2021;27(40):6794-6824.

-5. Yu KH, Beam AL, Kohane IS. Artificial Intelligence in Healthcare. Nat Biomed Eng. 2018;2(10):719-31.

-6. Firmino M, Angelo G, Morais H, Dantas MR, Valentim R. Computer-Aided Detection (CADe) and Diagnosis (CADx) System for Lung Cancer with Likelihood of Malignancy. Biomed Eng Online. 2016;15(1):2.

-7. Takiyama H, Ozawa T, Ishihara S, Fujishiro M, Shichijo S, Nomura S, et al. Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks. Sci Rep. 2018;8:7497.

-8. Van der Sommen F, Zinger S, Curvers WL, Bisschops R, Pech O, Weusten BL, et al. Computer-Aided Detection of Early Neoplastic Lesions in Barrett's Esophagus. Endoscopy. 2016;48:617-624.

-9. Kumagai Y, Takubo K, Kawada K, Aoyama K, Endo Y, Ozawa T, et al. Diagnosis Using Deep-Learning Artificial Intelligence Based on the Endocytoscopic Observation of the Esophagus. Esophagus. 2019;16:180-187.

-10. Horie Y, Yoshio T, Aoyama K, Yoshimizu S, Horiuchi Y, Ishiyama A, et al. Diagnostic Outcomes of Esophageal Cancer by Artificial Intelligence Using Convolutional Neural Networks. Gastrointest Endosc. 2019;89:25-32.

-11. Luo H, Xu G, Li C, He L, Luo L, Wang Z, et al. Real-Time Artificial Intelligence for Detection of Upper Gastrointestinal Cancer by Endoscopy: A Multicentre, Case-Control, Diagnostic Study. Lancet Oncol. 2019;20(12):1645-1654.

-12. Cao JS, Lu ZY, Chen MY, Zhang B, Juengpanich S, Hu JH, et al. Artificial Intelligence in Gastroenterology and Hepatology: Status and Challenges. World J Gastroenterol. 2021;27(16):1664-1690.

-13. Hashimoto R, Requa J, Dao T, Ninh A, Tran E, Mai D, et al. Artificial Intelligence Using Convolutional Neural Networks for Real-Time Detection of Early Esophageal Neoplasia in Barrett's Esophagus (With Video). Gastrointest Endosc 2020;91: 1264-1271.e1

-14. Ebigbo A, Mendel R, Probst A, Manzeneder J, Prinz F, de Souza LA Jr, et al. Real-Time Use of Artificial Intelligence in The Evaluation of Cancer in Barrett's Oesophagus. Gut. 2020;69:615-616.

-15. De Groof AJ, Struyvenberg MR, van der Putten J, van der Sommen F, Fockens KN, Curvers WL, et al. Deep-Learning System Detects Neoplasia in Patients With Barrett's Esophagus With Higher Accuracy Than Endoscopists in a Multistep Training and Validation Study With Benchmarking. Gastroenterology. 2020;158(4):915-929.e4.

-16. Cai SL, Li B, Tan WM, Niu XJ, Yu HH, Yao LQ, et al. Using a Deep Learning System in Endoscopy for Screening of Early Esophageal Squamous Cell Carcinoma (With Video). Gastrointest Endosc 2019;90: 745-753:e2

-17. Tokai Y, Yoshio T, Aoyama K, Horie Y, Yoshimizu S, Horiuchi Y, et al. Application of Artificial Intelligence Using Convolutional Neural Networks in Determining the Invasion Depth of Esophageal Squamous Cell Carcinoma. Esophagus. 2020;17:250-256.

-18. Menon S, Trudgill N. How Commonly is Upper Gastrointestinal Cancer Missed at Endoscopy? Endosc Int Open. 2014;2:E46-E50

-19. Wu L, Zhang J, Zhou W, An P, Shen L, Liu J, et al. Randomised Controlled Trial of WISENSE, a Real-Time Quality Improving System for Monitoring Blind Spots During Esophagogastroduodenoscopy. Gut. 2019;68:2161-2169.

-20. Ali H, Yasmin M, Sharif M, Rehmani MH. Computer Assisted Gastric Abnormalities Detection Using Hybrid Texture Descriptors for Chromoendoscopy Images. Comput Methods Programs Biomed. 2018;157:39-47.

-21. Nagao S, Tsuji Y, Sakaguchi Y, Takahashi Y, Minatsuki C, Niimi K, et al. Highly Accurate Artificial Intelligence Systems to Predict the Invasion Depth of Gastric Cancer: Efficacy of Conventional White-Light Imaging, Nonmagnifying Narrow-Band Imaging, and Indigo-Carmine Dye Contrast Imaging. Gastrointest Endosc 2020;92:866-873:e1.

-22. Sakai Y, Takemoto S, Hori K, Nishimura M, Ikematsu H, Yano T, et al. Automatic Detection of Early Gastric Cancer in Endoscopic Images Using a Transferring Convolutional Neural Network. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:4138-4141.

-23. Tsujii Y, Kato M, Inoue T, Yoshii S, Nagai K, Fujinaga T, et al. Integrated Diagnostic Strategy for the Invasion Depth of Early Gastric Cancer by Conventional Endoscopy and EUS. Gastrointest Endosc. 2015;82(3):452-9

-24. Wang CC, Chiu YC, Chen WL, Yang TW, Tsai MC, Tseng MH. A Deep Learning Model for Classification of Endoscopic Gastroesophageal Reflux Disease. Int J Environ Res Public Health. 2021;18(5):2428.

-25. Shichijo S, Endo Y, Aoyama K, Takeuchi Y, Ozawa T, Takiyama H, et al. Application of Convolutional Neural Networks for Evaluating Helicobacter Pylori Infection Status on the Basis of Endoscopic Images. Scand J Gastroenterol. 2019;54(2):158-163.

-26. Le Berre C, Sandborn WJ, Aridhi S, Devignes MD, Fournier L, Smaïl-Tabbone M, et al. Application of Artificial Intelligence to Gastroenterology and Hepatology. Gastroenterology. 2020;158(1):76-94.e2.

-27. Seguí S, Drozdzal M, Pascual G, Radeva P, Malagelada C, Azpiroz F, et al. Generic Feature Learning for Wireless Capsule Endoscopy Analysis. Comput Biol Med. 2016;79:163-172.

-28. Pannala R, Krishnan K, Melson J, Parsi MA, Schulman AR, Sullivan S, et al. Artificial Intelligence in Gastrointestinal Endoscopy. VideoGIE. 2020;5(12):598-613.

-29. Chen H, Wu X, Tao G, Peng Q. Automatic Content Understanding with Cascaded Spatial-Temporal Deep Framework for Capsule Endoscopy Videos. Neurocomputing. 2017;229:77-87.

-30. Ding Z, Shi H, Zhang H, Meng L, Fan M, Han C, et al. Gastroenterologist-Level Identification of Small-Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model. Gastroenterology. 2019;157(4):1044-1054.e5.

-31. Aoki T, Yamada A, Kato Y, Saito H, Tsuboi A, Nakada A, et al. Automatic Detection of Blood Content in Capsule Endoscopy Images Based on a Deep Convolutional Neural Network. J Gastroenterol Hepatol. 2020;35(7):1196-1200.

-32. Xiao Jia, Meng MQ. A Deep Convolutional Neural Network for Bleeding Detection in Wireless Capsule Endoscopy Images. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:639-642

-33. Usman MA, Satrya GB, Usman MR, Shin SY. Detection of Small Colon Bleeding in Wireless Capsule Endoscopy Videos. Comput Med Imaging Graph. 2016;54:16-26.

-34. Leenhardt R, Vasseur P, Li C, Saurin JC, Rahmi G, Cholet F, et al. A Neural Network Algorithm for Detection of GI Angiectasia During Small-Bowel Capsule Endoscopy. Gastrointest Endosc. 2019;89:189-194.

-35. Sengupta N, Tapper EB. Derivation and Internal Validation of a Clinical Prediction Tool for 30-Day Mortality in Lower Gastrointestinal Bleeding. Am J Med 2017;130: 601.e1-601:e8.

-36. Soffer S, Klang E, Shimon O, Nachmias N, Eliakim R, BenHorin S, et al. Deep Learning For Wireless Capsule Endoscopy: A Systematic Review and Meta-Analysis. Gastrointest Endosc. 2020;92:831–839.e8.

-37. Qin K, Li J, Fang Y, Xu Y, Wu J, Zhang H, et al. Convolution Neural Network for the Diagnosis of Wireless Capsule Endoscopy: A Systematic Review and Meta-Analysis. Surg Endosc. 2022;36(1):16-31.

-38. Pannala R, Krishnan K, Melson J, Parsi MA, Schulman AR, Sullivan S, et al. Artificial Intelligence in Gastrointestinal Endoscopy. VideoGIE. 2020;5(12):598-613.

-39. Khorasani HM, Usefi H, Peña-Castillo L. Detecting Ulcerative Colitis From Colon Samples Using Efficient Feature Selection and Machine Learning. Sci Rep. 2020;10:13744.

-40. Wang P, Berzin TM, Glissen Brown JR, Bharadwaj S, Becq A, Xiao X, et al. Real-Time Automatic Detection System Increases Colonoscopic Polyp and Adenoma Detection Rates: A Prospective Randomized Controlled Study. Gut. 2019;68(10):1813-1819.

-41. Zhao S, Wang S, Pan P, Xia T, Chang X, Yang X, et al. Magnitude, Risk Factors, and Factors Associated with Adenoma Miss Rate of Tandem Colonoscopy: A Systematic Review and Meta-analysis. Gastroenterology. 2019;156 (6):1661-1674e11.

-42. Gohari MR, Biglarian A, Bakhshi E, Pourhoseingholi MA. Use of an Artificial Neural Network to Determine Prognostic Factors in Colorectal Cancer Patients. Asian Pac J Cancer Prev. 2011;12:1469-1472.

-43. Biglarian A, Bakhshi E, Gohari MR, Khodabakhshi R. Artificial Neural Network for Prediction of Distant Metastasis in Colorectal Cancer. Asian Pac J Cancer Prev. 2012;13:927-930.

-44. Hassan C, Spadaccini M, Iannone A, Maselli R, Jovani M, Chandrasekar VT. Performance of Artificial Intelligence in Colonoscopy for Adenoma and Polyp Detection: A Systematic Review and Meta-Analysis. Gastrointest Endosc. 2021;93(1):77-85.e6

-45. Robles-Medranda C, Cifuentes-Gordillo C, Arevalo-Mora M, Egas-Izquierdo M, Puga-Tejada M, Cunto D, et al. Real-Time Computer-Aided Polyp and Adenoma Detection During Screening Colonoscopy in Expert And Non-Expert Endoscopists: A Single Center Study. Endoscopy. 2023;55(S 02):S232-S233.

-46. Khorasani HM, Usefi H, Peña-Castillo L. Detecting Ulcerative Colitis from Colon Samples Using Efficient Feature Selection and Machine Learning. Sci Rep. 2020;10:13744.

-47. Kahaleh M, Gaidhane M, Raijman I, Tyberg A, Sethi A, Slivka A, et al. Digital Cholangioscopic Interpretation: When North Meets the South. Dig Dis Sci. 2022;67(4):1345-1351.

-48. Robles-Medranda C, Valero M, Soria-Alcivar M, Puga-Tejada M, Oleas R, Ospina-Arboleda J, et al. Reliability and Ac- curacy of a Novel Classification System Using Peroral Chol- angioscopy for the Diagnosis of Bile Duct Lesions. Endoscopy. 2018;50(11):1059-70.

-49. Robles-Medranda C, Oleas R, Sánchez-Carriel M, Olmos JI, Alcívar-Vásquez J, Puga-Tejada M, et al. Vascularity Can Distinguish Neoplastic From Non-Neoplastic Bile Duct Lesions During Digital Single-Operator Cholangioscopy. Gastrointest Endosc. 2021;93(4):935-41.

-50. Kahaleh M, Gaidhane M, Shahid HM, Tyberg A, Sarkar A, Ardengh JC, et al. Digital Single-Operator Cholangioscopy Interobserver Study Using A New Classification: The Mendoza Classification (With Video). Gastrointest Endosc. 2022;95(2):319-26.

-51. Sethi A, Tyberg A, Slivka A, Adler DG, Desai AP, Sejpal D V., et al. Digital Single-operator Cholangioscopy (DSOC) Improves Interobserver Agreement (IOA) and Accuracy for Evaluation of Indeterminate Biliary Strictures: The Monaco Classification. J Clin Gastroenterol. 2022;56(2).

-52. Saraiva MM, Ribeiro T, Ferreira JPS, Boas FV, Afonso J, Santos AL, et al. Artificial Intelligence for Automatic Diagnosis of Biliary Stricture Malignancy Status in Single-Operator Cholangioscopy: A Pilot Study. Gastrointest Endosc. 2022;95(2):339-48.

-53. Pereira P, Mascarenhas M, Ribeiro T, Afonso J, Ferreira JPS, Vilas-Boas F, et al. Automatic Detection of Tumor Vessels in Indeterminate Biliary Strictures in Digital Single-Operator Cholangioscopy. Endosc Int Open. 2022;10(03):E262-8.

-54. Marya NB, Powers PD, Petersen BT, Law R, Storm A, Abusaleh RR, et al. Identification of Patients with Malignant Biliary Strictures Using a Cholangioscopy-Based Deep Learning Artificial Intelligence (With Video). Gastrointest Endosc. 2022.

-55. Robles-Medranda C, Baquerizo-Burgos J, Alcívar-Vásquez J, Kahaleh M, Raijman I, Kunda R, et al. Artificial Intelligence for Diagnosing Neoplasia on Digital Cholangioscopy: Development and Multicentric Validation of a Convolutional Neural Network Model. Endoscopy. 2023.

-56. Dahiya DS, Al-Haddad M, Chandan S, Gangwani MK, Aziz M, Mohan BP, et al. Artificial Intelligence in Endoscopic Ultrasound for Pancreatic Cancer: Where Are We Now and What Does the Future Entail? J Clin Med. 2022;11(24):7476.

-57. Shahidi N, Ou G, Lam E, Enns R, Telford J. When Trainees Reach Competency in Performing Endoscopic Ultrasound: A Systematic Review. Endosc Int Open. 2017;05(04):E239-43.

-58. Goyal H, Mann R, Gandhi Z, Perisetti A, Zhang Z, Sharma N, et al. Application of Artificial Intelligence in Pancreaticobiliary Diseases. Ther Adv Gastrointest Endosc. 2021; 14:1-12.

-59. Norton ID, Zheng Y, Wiersema MS, Greenleaf J, Clain JE, DiMagno EP. Neural Network Analysis of EUS Images to Differentiate Between Pancreatic Malignancy and Pancreatitis. Gastrointest Endosc. 2001;54(5):625-9.

-60. Sãftoiu A, Vilman P. Endoscopic ultrasound elastography Endoscopic Ultrasound Elastography-a New Imaging Technique for the Visualization of Tissue Elasticity Distribution. J Gastrointestin Liver Dis. 2006;15(2):161-5.

-61. Sǎftoiu A, Vilmann P, Gorunescu F, Janssen J, Hocke M, Larsen M, et al. Efficacy of an Artificial Neural Network-Based Approach to Endoscopic Ultrasound Elastography in Diagnosis of Focal Pancreatic Masses. Clin Gastroenterol Hepatol. 2012;10(1).

-62. Brosens LAA, Hackeng WM, Offerhaus J, Hruban RH, Wood LD. Pancreatic Adenocarcinoma Pathology: Changing “Landscape.” J Gastrointest Oncol. 2015;6(4):358–74.

-63. Kuwahara T, Hara K, Mizuno N, Okuno N, Matsumoto S, Obata M, et al. Usefulness of Deep Learning Analysis for the Diagnosis of Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Clin Transl Gastroenterol. 2019;10(5).

-64. Hirai K, Kuwahara T, Furukawa K, Kakushima N, Furune S, Yamamoto H, et al. Artificial Intelligence-Based Diagnosis of Upper Gastrointestinal Subepithelial Lesions on Endoscopic Ultrasonography Images. Gastric Cancer. 2022;25(2):382-91.

-65. Minoda Y, Ihara E, Fujimori N, Nagatomo S, Esaki M, Hata Y, et al. Efficacy of Ultrasound Endoscopy with Artificial Intelligence for the Differential Diagnosis of Non-Gastric Gastrointestinal Stromal Tumors. Sci Rep. 2022;12(1).

-66. Robles-Medranda C, Oleas R, Del Valle R, Mendez JC, Alcívar-Vásquez J, Puga-Tejada M, et al. ID: 3521955 Application of Artificial Intelligence For Real-Time Anatomical Recognition During Endoscopic Ultrasound Evaluation: A Pilot Study. Gastrointest Endosc. 2021;93(6):AB221.

-67. Zhang J, Zhu L, Yao L, Ding X, Chen D, Wu H. Deep Learning-Based Pancreas Segmentation and Station Recognition System in EUS: Development and Validation of Auseful Training Tool (With Video). Gastrointest Endosc. 2020;92(4):874-885.e3

-68. Zhang L, Lu Z, Yao L, Dong Z, Zhou W, He C, et al. Effect of a Deep Learning-based Automatic Upper GI Endoscopic Reporting System: A Randomized Crossover Study (With Video). Gastrointest Endosc. 2023; 98(2): 181 - 190

-69. Qu JY, Li Z, Su JR, Ma MJ, Xu CQ, Zhang AJ, et al. Development and Validation of an Automatic Image-Recognition Endoscopic Report Generation System: A Multicenter Study. Clin Transl Gastroenterol. 202; 12(1): e00282.

Publicado

2023-09-30

Cómo citar

Baquerizo-Burgos, J., Egas-Izquierdo, M., Cunto, D., & Robles-Medranda, C. (2023). La era de la endoscopia inteligente: cómo la inteligencia artificial potencia la endoscopia digestiva. Acta Gastroenterológica Latinoamericana, 53(3), 211–240. https://doi.org/10.52787/agl.v53i3.339